
Middlesex University Research Repository
An open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

De Raffaele, Clifford, Smith, Serengul and Gemikonakli, Orhan ORCID:
https://orcid.org/0000-0002-0513-1128 (2017) Explaining multi-threaded task scheduling using

tangible user interfaces in higher educational contexts. In: 2017 IEEE Global Engineering
Education Conference (EDUCON), 25-28 Apr 2017, Athens, Greece.

Final accepted version (with author’s formatting)

This version is available at: http://eprints.mdx.ac.uk/23233/

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners
unless otherwise stated. The work is supplied on the understanding that any use for commercial gain
is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study
without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or
extensive quotations taken from them, or their content changed in any way, without first obtaining
permission in writing from the copyright holder(s). They may not be sold or exploited commercially in
any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the
author’s name, the title of the work, publication details where relevant (place, publisher, date), pag-
ination, and for theses or dissertations the awarding institution, the degree type awarded, and the
date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy

http://eprints.mdx.ac.uk
http://eprints.mdx.ac.uk/23233/
mailto:eprints@mdx.ac.uk
http://eprints.mdx.ac.uk/policies.html#copy

Explaining Multi-threaded Task Scheduling using
Tangible User Interfaces in Higher Educational

Contexts

Clifford De Raffaele, IEEE Member
School of Science and Technology

Middlesex University Malta
Pembroke, PBK1776, Malta

cderaffaele@ieee.org

Serengul Smith, Orhan Gemikonakli
School of Science and Technology

Middlesex University
Hendon, NW4 4BT, UK

s.smith@mdx.ac.uk, o.gemikonakli@mdx.ac.uk

Abstract—Endorsing the advantages of computer-based
interaction within the educational domain, this study analysis the
potential for tangible interactive technology to mitigate the
challenges faced by higher educational institutes in explaining
abstracted technical concepts. Implemented within a novel within
the educational domain, this paper evaluates the efficacy of
adopting a tangible user interface (TUI) to aid in the conceptual
understanding of multi-threaded task scheduling and
programming by undergraduate IT students. Making use of
physical object representations, a description is provided for the
distinctive development of a collaborative system that allows
students to interact with and visualize the scheduling of multiple
software threads onto a computer processes. The paper
quantitatively studies the usefulness of the proposed TUI system
with respect to traditional lectures by deploying the system
within a university computing degree. Evaluation analysis of the
obtained results highlight a significant improvement in the
students’ abilities to grasp the abstract and complex notions of
multi-threading, thus validating the potential of the proposed
study.

Keywords— Computer aided instruction; Higher Education;
Multi-threaded Task Scheduling; Tangible User Interface

I. INTRODUCTION

The drive to include technology within the educational
environment has garnered consistent momentum in the last
years [1], with the premise of active learning leading the
strategy in computer-based education [2]. Referred to as digital
natives, today’s children have particularly succeeded in
embracing these techniques [3-4], and the coupling of
education with digital games is becoming ever-more
widespread due to its ability to further engage children with
learning [5]. Several studies have supported this approach, with
results highlighting an increase in knowledge and cognitive
performance from students [6-8].

In tandem with this progress, market commoditisation has
been shifting technical advancements such as multiple CPU
integration from a previously specialised domain associated
with supercomputers to proliferation in laptops and mobile
systems [9]. As parallel computing gained increased
significance in the industry, this has in turn directly affected the
educational curricula [10], with students in computer science

being compelled to familiarise themselves with the different
approaches to managing parallelism in order to have the ability
to eventually exploit future computing technologies [9].

With multi-thread programming becoming the method of
choice in parallel computing [11], emphasis within the industry
is ever-more focused on the “real performance” of systems and
hence impelling programmers to consider the overall execution
time of their software [12]. Thus, whilst teaching modern
programming languages today, lectures must go beyond object
oriented concepts and promptly introduce students to built-in
thread functionality within languages to deal with concurrency
and inter-thread synchronisation issues [10].

As explained by the authors in [13], introducing the
paradigm of multi-threading poses significant challenges for
both the lecturer to find the best way to the concepts as well as
for students to understand what is happening to their
programmes [13]. This difficulty was practically experienced
in the study by [14] which reiterated previous claims,
highlighting the need for changing the students’ thinking
paradigm from that adopted in sequential programming [15].

Further adding complexity to multi-threaded programming
is the fact that debugging and analysis techniques which are
commonly adopted in single-threaded applications do not
provide the same relevant information to reconstruct the
parallel execution of programs [10]. To overcome this
limitation and mitigate the loss of students’ confidence in
understanding what is happening at runtime to their code [13] a
number of software tools have been developed that log the
concurrent execution of instructions on different threads and
visually display these using UML and other software
development tools [16-18]. Whilst these approaches provide a
significant aid for students to understand multi-thread runtime
execution [10], [13], they intrinsically require successive
iterations of code programming and execution to generate
useful results. The latter can in fact only be derived in post-
execution of different multi-threaded configurations, upon
which students can finally comparatively evaluate each
simulation scenario [19].

In light of the above constraints and the limited adoption of
computer-based technology within literature for explaining the
concepts of concurrency and inter-thread synchronisation, this

paper proposes the adoption of a Tangible User Interface (TUI)
system to provide students the ability to interactively
comprehend the abstract nature of multi-threaded execution.
This paper is organised so that following a brief analysis and
review of TUI related articles in education, presented Section
II, the proposed design for a novel multi-threaded scheduling
TUI system is elaborated in Section III. Subsequently, Section
IV explains the details and results derived from implementing
this research within a university programme. Finally, Section V
outlines a brief conclusion of the presented work.

II. TANGIBLE USER INTERFACES

TUIs have been developed as innovative human-computer
interaction technique that natively interlaces the physical and
digital domains [20]. As opposed to conventional Graphical
User Interfaces (GUI)s, TUI systems go beyond the limited use
of computer peripherals (such as keyboards and mice) and
permit users to interact with digital information through
manipulation of physical objects and triggered behaviours
[21],[22]. This enables users of TUI systems to take advantage
of innate spatial and environmental skills [23] whilst
interacting with and configuring physical objects [24],
attributes which have been directly correlated with the
enhancement of problem solving skills [25]. Making use of
common physical items representing a users’ everyday
environment to interact with digital information [25] further
affords TUI systems an assimilation paradigm that helps users
focus on the subject at hand without being distracted by
“control mechanisms” for interaction and feedback [26].
Studies report that with respect to conventional systems such as
GUI and multitouch, such techniques provide TUI users a
heighted sense of constructive behaviour, attractive
engagement, and sociocultural learning by enabling
collaborative use [25][27].

The integration of these learning benefits together with the
inherent attractive and eye-catching aspects of TUI systems
[28] led to positive feedback when integrated within children’s
learning environments. By allowing children to touch and
manipulate tangible musical notes, the work in [29] reported
significant progress through the “boring” phases of learning
music. Moving tokens were used in [30] to familiarise students
with astrological notions of moon phases and the motion of
planets. Another system aimed to teach children rhetorical
skills and hence facilitate their expression of complex
arguments using TUI [31]. The substitution of numbers with
tangible patterned blocks also allowed the successful
mathematical teaching of pattern fitting and area comparison
[32].

As a contrast, little work has been done in using TUI to
explain programming related concepts. In [24], the authors
employ a gamified approach to introduce basic concepts for
object-oriented programming (OOP). The study employs the
use and programming of Sifteo cubes [33], which are
autonomous microcontroller-based devices, by students during
their course. Whilst results illustrate that this technique
augmented the interest levels and consequently the achieved
marks by students [24], the technique does not focus on the
tangible aspect of teaching and uses Sifteo cubes mainly as a
code execution platform rather than the Integrated

Development Environment (IDE) on a conventional computer.
Another study aimed to introduce aspects of programming
recursion in the Erlang functional language by linking a TUI
system in conjunction with Augmented Reality (AR) [34].
Whilst succeeding to visualise programming stacks in single-
tailed-recursive structural functions, the technological
interactions of the system are not widely applicable [34] and
the system makes use of tangible blocks merely as optical
markers for controlling pure AR virtualisation.

More complex adaptions of TUI systems have alternatively
been employed within the industrial setting to model physical
situations and visualise abstract associations [28]. Within the
air traffic control industry, the Strip’TIC TUI system allowed
employees to visualise and understand events within the
controlled airspace [35]. Employed for architectural building
design, a TUI system provided architects the ability to analyse
the effect of shading and illumination generated by different
daylight stages [1]. Geospatial modelling using TUI was
further successful in [36] which allowed users a flexible way to
sculpt terrain as well as investigate stormwater runoff
management options. The interactive control abilities of TUI
were further exploited in [37] where physical objects,
representative of design models, were employed to more
intuitively and easily edit CAD and GIS designs [37]
designations.

III. PROPOSED TUI FRAMEWORK

The unique contribution of this paper lies at the confluence
of the different streams investigated in literature on TUI
implementations and multi-threading education. This research
makes its contribution by analysing the suitability of TUI
systems for integration with the domain of higher education. In
particular, the proposed system will be evaluated for its
efficacy and aptness in aiding the teaching and learning of
abstract and complex concepts such as those present within the
task scheduling of a multi-threaded environment.

A. System Overview

The system was designed to challenge students in allocating
a number of computationally complex operations for execution
on multiple threads using a TUI approach. Based on the
MCRpd interaction model [38] illustrated in Fig 1(a), the
proposed implementation adopts an interactive table top design
in line with the ReacTIVision framework [39] depicted in Fig
1(b).

Fig. 1. a) Tangible interaction model. (source: [38])

b) ReacTIVision architectural framework (source: [39])

(a) (b)

As shown in Fig 2, the physical construction was composed
of a wooden table onto which a semi-transparent acrylic glass
was placed. The height of the table, at 80cm, was designed so
that the table top setup could be easily accessible and visible to
a number of students standing around it. These dimensions
provided an interactive area of 1m x 0.7m which was
illuminated using a short-throw projection and captured via a
wide-angle camera.

Fig. 2. Interactive table top hardware setup used in proposed system.

B. Interactions

Students engage interactively with the proposed system via
a set of 3D physical objects which allow the control and setup
of scenarios. These would be directly used to allow setup and
control of the created multi-threaded scenarios. These were
designed so that they inherently symbolise and express the
different computationally complex procedures which would
undergo multi-threaded execution within the system. Four
commonly used processes in the computer science field were
identified by these criteria so as to ensure that students are
familiar with the scenarios. These were; downloading content
from the internet, compressing files, image processing and
content searching).

Fig. 3. Design of tangible objects representing distinct processes;
a) downloading internet content, b) file compression,
c) image processing, d) content searching,
e) reacTIVision ‘amoeba’ fiducials [39].

As seen in Fig 3, the tangible objects were designed to
characteristically represent the aforementioned processes so
that interaction would be evermore instinctive to students. The
following descriptions highlight individual feature
representation visualised in Fig 3:

 Internet Downloads (Fig 3a) – a green downward facing
arrow was implemented, typical of internet browser
icons for this process, together the symbols ‘www’ and
a globe both common representatives of the internet.

 File Compression (Fig 3b) – a yellow folder shape was
used onto which a physical runner was integrated to
represent the widely employed file archiving technique
using the ‘zip’ compression algorithm.

 Image Processing (Fig 3c) – one of the basic and most
commonly the foremost operation on image processing
algorithms entails greyscaling of the digital image. This
was represented using a photo with two colour variants
(full colour and greyscale) within a typical photo frame.

 Content Searching (Fig 3d) – a newspaper article is
represented in miniature with a magnifying glass
physically oriented on parts of the text to represent the
commonly employed symbols for computer text
searching.

 Each object was mounted onto an 8cm x 8cm wooden
platform which was chosen so as to allow comfortable physical
control and interaction with the objects. The size of this
wooden platform also enabled the scaling of reacTIVision
‘amoeba’ fiducials [39] to be attached underneath as seen in
Fig 3e. These symbols are orthogonally optimized for unique
identification of each object, its centre point as well as the
rotation angle of the tangible device using the installed camera.

 This setup provides users the ability to interact with the
system using accurate fiducial positioning, whereby placement
of the objects in specific areas on the table triggers different
algorithms. A timer was employed for this purpose which
locked-in a tangible object with the system once the former is
placed on a location for more than five seconds. The proposed
framework also makes intrinsic use of spatial shifts of tangible
objects as an interaction domain. Once locked within a process,
the TUI objects are consistently spatially tracked and the
system reacts according to the direction of motion followed.
The unique nature of the ‘amoeba’ fiducial symbols further
provide rotational uniqueness, which the framework exploits to
provide an additional domain of interaction whereby students
can alter the attributes of a process by rotating the physical
object in a clockwise or anti-clockwise direction.

C. User Interface

Inherent to the benefits conveyed by proposed TUI system
is the ability to enhance and interweave the physical tangible
objects with digital information. Perceptual coupling of
interactive embodiment is achieved by projecting onto the table
a dynamic GUI which receives and reacts to controls and
inputs provided from the tangible devices. Information, colours
and sounds are dynamically altered as students interact with the
platform and these provide direct feedback and computational

cooping to the interactions undertaken by the tangible objects.
Interfacing with the developed Java based software algorithms,
the GUI was developed using the JavaFX library, which
enabled the use of visual components such as gauges and
dynamic charts to further explain the occurring processes.

The initial design upon program start-up, as illustrated in
Fig 4, consists of four main areas; the status dashboard, the
queue and CPU loading dashboard, the processes description
listing, and the thread and tasks area.

Fig. 4. GUI layout segmented according to the four main display areas

The top segment of the GUI, depicted in Fig 5, provides the
student both information about the current state as well as data
from previous system configurations, which can be used for
real-time comparison. This dashboard affords students this by
allowing direct comparison of both the current and previous
simulation execution timings (in milliseconds) respectively.
Furthermore, the user can also keep track of the amount of
process executed in the previous run by means of
representative icons on the top-right corner for more detailed
comparison of the tasks undertaken. The Queue and CPU
dashboard compliment this data by providing further
information about the current simulation setup by enlisting
process tasks which are queued for execution as well as a
gauge measuring CPU load during runtime across both threads
as seen in Fig 6b. The queue, illustrated in Fig 6a was designed
to serve also as placeholders for the tangible objects being used
so as the current processes queued can be visually associated
using respective TUI objects.

Fig. 5. Status dashboard highlighting current system execution timings and

state in direct comparison with previous process execution.

Fig. 6. Queue list for current simulation setup, together with CPU load

monitoring gauge during multi-threaded execution.

The right section of the table interface contains a process
description of the locked-in object, as well as a breakdown of
the selected process into distinct sub-processes which need to
be executed as depicted in Fig 7a. These are highlighted upon
process selection and a red/green colour schema, captured in
Fig 7b, is used to discriminate sub-processes which have been
allocated on threads and others that still need to be scheduled.
Moreover, this task list is also used during configured multi-
threaded execution to highlight the sub-process which are
currently being considered by the system. As shown in Fig 7c,
the description section serves also as an area to explain to the
students any execution error or exception encountered and thus
provides formative feedback on the system status accordingly.

Fig. 7. Process description list with sub-processes breakdown used for

scheduling and status feedback.

The central area within the system interface, highlighted in
Fig 8, is the section in which the students will mainly interact
with. To aid explaining multi-threaded scheduling concepts,
the system adopted a two-threaded design which allowed a
reduction in numerical complexity as well as aided better
visualisation by students. This section is chiefly composed of
the main and secondary threads, denoted as Thread 0 and
Thread 1 in Fig 4 as well as a process breakdown section in the
centre whereby locked-in processes are decomposed into sub-
tasks and these are assigned onto individual threads using the
tangible objects to spatial shift into location accordingly. The
thread load area further allows the student to dynamically
identify the sub-tasks that have been assigned to each thread, as
depicted in Fig 8, with each process allocated a unique colour
in harmonisation with the tangible object.

Fig. 8. Thread visualisation and sub-process allocation section.

D. Session

A complete session of the system is best understood as a
series of stages within which the student undertakes to setup a
multi-threaded environment. Making use of the TUI objects
photographed in Fig 3, students are able to add a number of
processes onto an execution queue which are then compiled
and run with the execution time highlighted in the dashboard of
Fig 5. As illustrated in Fig 8, once a tangible object is placed
onto the process placeholder area, a lock-in five second
countdown timer is commenced after which the individual
process is decomposed into a set of sub-tasks placed in the
middle of the process area as visualised with the blue
components in Fig 4. The description and to-do list sections,
illustrated in Fig 7, are concurrently updated accordingly.

Making use of the same tangible objects, students then
allocate individual sub-process tasks onto either the main or
secondary thread by physically dragging each task accordingly.
In order to aid the understanding of task concurrency decisions,
once locked-in on a sub-process, adjacent information is
projected about the individualistic task duration and its
relational dependency as seen in Fig 9a. Upon placing each
sub-process into the thread task area, three circles highlighted
in Fig 9b are displayed and the students can alter the task
priorities by rotating and angling the tangible object to the
selected value. This decision affects in turn the whole thread
priority which will be assigned the highest allocated value as
seen in the thread gauge of Fig 9b.

Fig. 9. Visualisation options for information relating to task dependency and

user-allocated priority.

Following the successful allocation of the sub-tasks within
a process, students can either opt to assign additional processes
to the threads as illustrated in Fig 8, or allow a dedicated
countdown timer of ten seconds to elapse following which
simulation of the assigned tasks will commence. Upon runtime,
the system will start completing the processes accordingly
whilst updating the CPU gauge and the current time display in
the status dashboard. Progress is tracked by students using the
highlighting of the tasks being executed inside the to-do-list
panel. Finally, a session ends with the execution duration and
process details displayed to students in the status dashboard as
shown in Fig 5, whereby details are also kept of previous runs
for direct comparison of multi-threaded process allocation
setups.

The system also detects exceptional instances when the
main thread has been incorrectly allocated and scheduled to be
idle whilst processes would still be running on the secondary
thread. To allow students to visualise and understand the
executional procedure undertaken in such an instance, the TUI

system pauses the execution timer and an animation is
displayed whereby progressive transfer occurs of the currently
executing task from the secondary thread towards the main
thread, after which the system execution carries on normally.
Alternatively, if the student incorrectly allocated tasks which
conflict at execution time due to internal process dependencies,
an error is thrown by the system and execution is halted while
details are displayed in the description area as shown in Fig 7c.
In both these exceptional instances, the user attention is further
attracted by the TUI system with the use of appropriate sounds
and animations. These instances provide direct formative
feedback to students and hence aid the conceptual learning
better.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Evaluation Methodology

The implementation of the TUI system was undertaken at
Middlesex University Malta within a degree programme of
Computer Science. Second year students reading a module in
Engineering Software Development were selected for
summative evaluation. These candidates had a prerequisite in
object oriented programming basics and were introduced
during their second year of study to concepts of computer
architecture and operating systems. The topic of multi-threaded
task scheduling was within syllabus of this module and the
evaluation session was coordinated to coincide with the formal
introduction to the multi-thread domain.

The class of nineteen (19) students aged between seventeen
(17) and twenty-six (26) years old was recruited based on a
convenience sampling technique. A random selection of seven
(7) students was selected for the experimental group whilst the
remaining twelve (12) students would compose the control
group for the evaluation study. The selection of 7 students was
based on the physical limitation on the amount of students that
are able to successfully huddle around and interactively
participate on the table-top system. The control group would be
subject to a traditional lecture for introducing multi-thread task
scheduling, whilst the experimental group would make use of
the proposed TUI system for explanation of the same multi-
threaded concepts. In order to reduce variable conditions
between both cohorts, each session was allocated a fixed time
and delivered by same module Lecturer on the same day.

The module was studied by students reading their degree in
either full-time or part-time mode. This introduced a potential
variation between students owing to their individualistic
exposure and practical experience towards the subject of multi-
threaded software development from potential industrial
perspectives. Whilst the theoretical concepts of multi-thread
task scheduling would be introduced within the coordinated
session, an a-priori examination was undertaken by all
students, so as to establish an individualistic knowledge
baseline. This assessment was composed of ten (10) multi-
thread scheduling related questions posed as a combination of
open-ended and multiple choice questions.

Following this test, students were split into different rooms
for the undertaking of their respective group session. Whilst the
traditional lecture used conventional technological equipment

such as video projection and smartboard setups, the TUI
session complimented the same projected slide material with
the explanation on the proposed framework. Both sessions
covered identical technical content and task examples, which
involved mainly the understanding of various multi-threaded
scheduling concepts and their potential related errors. Further
to completing a tuition session, each cohort was provided with
another questionnaire to answer. This test, whilst containing
different questions than the first one, covered similar multi-
threaded conceptual knowledge, using a combination of open-
ended and multiple choice questions.

 The evaluation process was hence designed to yield a
quantitative analyses, whereby students would be evaluated on
their answers to academic assessments. This provided the
necessary data to objectively compare and quantify the ability
of the proposed teaching methodology to convey the abstract
notions of multi-threaded task scheduling procedures.

B. Results and Discussion

The data in Fig 10 represents the results obtained from all
the participating students within their common pre-test
technical questionnaire. The average mark obtained by the
entire class in this initial test was of 27% with a standard
deviation of 12%. The normally distributed data for this initial
test, moreover outlines that students had in general a similar a-
priori understanding of the subject.

Fig. 10. Individual student grades during an a-priori examination.

The student cohort was divided randomly according to the
predefined group sizes, and following each teaching
intervention, a second technically similar test was provided to
students. This allowed for a direct relational deduction of the
each student’s individual ability to understand the multi-

threaded concepts conveyed in the respective session. The
results in Fig 11 illustrate a personal comparison between the
before and after grades obtained by individual students
attending a traditional lecture on multi-threaded task
scheduling (Fig 11a - blue) with respect to those being
provided the same knowledge using the proposed TUI system
(Fig 11b - red).

The comparative histograms in Fig 11a highlight that
following the attendance to traditional lecture, in general
students improved their understanding of multi-threaded
programming, with an average mark improvement from 30 (SD
14.1) to an average mark of 48.3 (SD 19.9). This occurred even
in light of students 10 and 12, who failed to understand the
provided lecture and thus weren’t able to answer the second set
of questions correctly. Nevertheless, a paired sample t-test on
the marks obtained by each student in this lecture-based group
showed that an average grade increase of 18.3 marks has been
registered with p < 0.05 and a test statistic of 2.99.

In relation to the control group, the students who learnt
multi-thread concepts whilst using the proposed TUI system,
Fig 11b, demonstrated an average mark increase from 22.8 (SD
7.6) to 77.1 (SD 17.0). A separate paired sample t-test on the a-
priori and a-posteriori grades of the TUI learning cohort proved
that the grade increase had a p<0.001 and a test statistic of
9.50, clearly highlighting the statistical significance of the
obtained result. The mean difference in the grade improvement
of both teaching techniques is depicted in Fig 12 together with
the respective 95% confidence lower and upper bounds.

Fig. 12. Relative grade improvement obtained by students at 95%

confidence bounds in a-posteriori examinations following;
a) Traditional lecture session, b) Proposed TUI system session.

Fig. 11. Individualistic student comparison between test grades obtained before and after attending a learning session using;
a) Traditional lecture session, b) Proposed TUI system session.

An independent sample t-test was further undertaken on the
relative grade improvement from both examination marks
between the two groups. Albeit, some variation can
undoubtedly be attributed to the smaller group size tested for
the TUI experiment, the results categorically endorsed the fact
that students learning the abstract concepts of multi-threaded
task scheduling using the proposed TUI system were able to
attain 22.8 higher marks (SD 9.0) than the control group. This
discrepancy was stated under Levene’s test for equal
population variance which proved the result statistically
significant at p<0.005. The positive results from utilising the
TUI system were also resounded subjectively by the students
and lecturer alike, which reported a heightened sense of
engagement whilst interacting with the proposed system. This
encouraging phenomenon was observed both in terms of
increased participation in discussions during the topic
explanation as well as augmented group collaboration between
students whilst configuring the system.

V. CONCLUSION

This paper has considered the use of a more practical
approach to introduce second-year undergraduate students to
the abstract concepts of multi-threaded task scheduling. A
tangible user interface system was proposed which provided
students the ability to physically interact and actively visualise
the effects of scheduling on the execution of processes across
different threads as well as appreciate better the situations
leading to runtime execution errors. Through evaluation and
analysis of the implemented experimental sessions, the
effectiveness of the TUI system was objectively quantified
with respect to a traditional lecturing approach. This concluded
that TUI systems have great potential in aiding the delivery of
higher educational concepts which are normally difficult to
explain and challenging for students to comprehend.

ACKNOWLEDGMENT

The authors would like to thank Middlesex University
Malta undergraduate students Mr. Daniel Sammut, Mr. Patrick
Sammut, Mr. Matthew Mizzi, Mr. Keith Cassar and Mr. Carlos
Spiteri for their valued contribution in the successful
development and implementation of this work.

REFERENCES

[1] J. Nasman and B. Cutler, "Evaluation of user interaction with daylighting

simulation in a tangible user interface," Automation in Construction, vol.
36, pp. 117-127, 2013.

[2] J. Blasco-Arcas, I. Buil, B. Hernandez-Ortega and F. Javier Sese, "Using
clickers in class. The role of interactivity, active collaborative learning
and engagement in learning performance," Computers & Education, vol.
62, March, pp. 102-110, 2013.

[3] P. Thompson, "The digital natives as learners: Technology use patterns
and approaches to learning," Computers & Education, vol. 65, July, pp.
12-33, 2013.

[4] V. J. Rideout, U. G. Foehr and D. F. Roberts, "Generation M2: Media in
the Lives of 8- to 18-Year-Olds," Kaiser Family Foundation,
Washington, D.C., 2010.

[5] R. R. Mellecker, L. Witherspoon and T. Watterson, "Active Learning:
Educational Experiences Enhanced Through Technology-Driven Active

Game Play," The Journal of Educational Research, vol. 106, no. 5, pp.
352-359, 2013.

[6] F. C. Blumberg and E. Altschuler, "From the playroom to the classroom:
Children’s views of video game play and academic learning," Child
Development Perspectives, vol. 5, pp. 99-103, 2011.

[7] S. M. Jaeggi, M. Buschkuehl, J. Jonides and P. Shah, "Short and long-
term benefits of cognitive training," Psychological and Cognitive
Sciences, vol. 108, p. 10081–10086, 2011.

[8] K. Kellison and G. Font, ""Click, You're It!": The Role of Gaming in the
K-12 Educational Setting," in Design and Implementation of Educational
Games: Theoretical and Practical Perspectives, Hershey, PA:
Information Science Reference, 2010, p. 278–292.

[9] G. Wolffe and C. Treffz, "Teaching parallel computing: new
possibilities," Journal of Computing Sciences in Colleges, vol. 25, no. 1,
pp. 21-28, 2009.

[10] Y. Bi and J. Beidler, "A visual tool for teaching multithreading in Java,"
Journal of Computing Sciences in Colleges, vol. 22, no. 6, pp. 156-163,
2007.

[11] M. Bedy, S. Carr, X. Huang and C.-K. Shene, "The design and
construction of a user-level kernel for teaching multithreaded
programming," in Frontiers in Education Conference, Puerto Rico, 1999.

[12] N. Giacaman, "Teaching by Example: Using Analogies and Live Coding
Demonstrations to Teach Parallel Computing Concepts to Undergraduate
Students," in IEEE 26th Parallel and Distributed Processing Symposium,
Shanghai, 2012.

[13] G. Malnati, C. M. Cuva and C. Barberis, "JThreadSpy: teaching
multithreading programming by analyzing execution traces," in 2007
ACM workshop on Parallel and distributed systems: testing and
debugging, London, United Kingdom, 2007.

[14] C.-K. Shene, "Multithreaded Programming in an Introduction to
Operating Systems Course," in 29th SIGSCE Technical Symposium on
Computer Science Education, Atlanta, Georgia, 1998.

[15] H. Sutter, "A fundamental turn toward concurrency in software," Dr.
Dobb's Journal, vol. 30, no. 3, 2005.

[16] R. Oechsle and T. Schmitt, "JAVAVIS: Automatic Program
VIsualization with Object and Sequence Diagrams Using the Java Debug
Interface (JDI)," Ed. Lecture Notes in Computer Science, vol. 2269, pp.
176-190, 2002.

[17] H. Leroux, A. Requile-Romanczuk and C. Mingins, "JACOT: a tool to
dynamically visualise the execution of concurrent Java programs," in 2nd
Int. Conf. on Principles and Practice of Programming in Java, 2003.

[18] K. Mehner, "JaVis: A UML-Based Visualization and Debugging
Enviroment for Concurrent Java Programs," Ed. Lecture Notes in
Computer Science, vol. 2269, pp. 163-175, 2002.

[19] J. B. J. Trumper and J. Dollner, "Understanding complex multithreaded
software systems by using trace visualization," in 5th international
symposium on Software visualization, Salt Lake City, Utah, USA, 2010.

[20] M. L. Maher and M. J. Kim, "Studying designers using a tabletop system
for 3D design with a focus on the impact on spatial cognition," in First
IEEE International Workshop on Horizontal Interactive Human-
Computer Systems (TableTop 2006), Sydney Univ., NSW, Australia,
2006.

[21] S. Wagner, Nusbaum, H and Goldin-Meadow, S, "Probing the mental
representation of gesture: Is handwriting spatial?," Journal of Memory
and Language, vol. 50, 2004.

[22] L. Garber, "Tangible User Interfaces: Technology You Can Touch,"
Computer, vol. 45, no. 6, pp. 15-18, June 2012.

[23] H. Ishii, "The tangible user interface and its evolution," Communications
of the ACM - Organic user interface, vol. 51, no. 6, pp. 32-36, jUNE
2008.

[24] J. M. Rodríguez Corral, A. C. Balcells, A. M. Estévez, G. J. Moreno and
M. J. Ferreiro Ramos, "A game-based approach to the teaching of object-
oriented programming languages," Computers & Education, vol. 73, pp.
83-92, 2014.

[25] B. Schneider, P. Jermann, G. Zufferey and P. Dillenbourg, "Benefits of a

Tangible Interface for Collaborative Learning and Interaction," IEEE
Transactions on Learning Technologies, vol. 4, no. 3, pp. 222-232, 2011.

[26] A. Dünser, J. Looser, R. Grasset, H. Seichter and M. Billinghurst,
"Evaluation of Tangible User Interfaces for Desktop AR," in 2010
International Symposium on Ubiquitous Virtual Reality (ISUVR),
Gwangju, 2010.

[27] T. Sapounidis and S. Demetriadis, "Tangible versus graphical user
interfaces for robot programming: exploring cross-age children’s
preferences," Personal and Ubiquitous Computing, vol. 17, no. 8, pp.
1775-1786, 2013.

[28] D. Edge and A. Blackwell, "Correlates of the cognitive dimensions for
tangible user interface," Journal of Visual Languages & Computing, vol.
17, no. 4, pp. 366-394, 2006.

[29] R. Waranusast, A. Bang-ngoen and J. Thipakorn, "Interactive tangible
user interface for music learning," in 28th International Conference on
Image and Vision Computing New Zealand, New Zealand, 2013.

[30] H. Agrawal and K. Sorathia, "AstroGrasp: a tangible user interface for
teaching basic astronomy concepts," in 11th Asia Pacific Conference on
Computer Human Interaction, Bangalore, India, 2013.

[31] M. Stringer, E. F. Toye, J. A. Rode and A. F. Blackwell, "Teaching
rhetorical skills with a tangible user interface," in Interaction design and
children: building a community, Maryland, USA, 2004.

[32] S. Yonemoto, T. Yotsumoto and R. Taniguchi, "A Tangible Interface for
Hands-on Learning," in International Conference on Information
Visualisation, London, England, 2006.

[33] D. Merrill, E. Sun and J. Kalanithi, "Sifteo cubes," in Human Factors in
Computing Systems, Texas, USA, 2012.

[34] J. D. T. Vidarte, C. Rinderknecht, J. I. Kim and H. Kim, "A Tangible
Interface for Learning Recursion and Functional Programming," in
International Symposium on Ubiquitous Virtual Reality (ISUVR),
Gwangju, 2010.

[35] J.-L. Vinot, C. Letondal, R. Lesbordes, S. Chatty, S. Conversy and C.
Hurte, "Tangible augmented reality for air traffic control," Interactions,
vol. 21, no. 4, pp. 54-57, July 2014.

[36] L. Tateosian, H. Mitasova, B. Harmon, B. Fogleman, K. Weaver and R.
Harmon, "TanGeoMS: Tangible Geospatial Modeling System," IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 6,
pp. 1605-1612, 2010.

[37] A. Petrasova, B. Harmon, V. Petras and H. Mitasova, Tangible Modeling
with Open Source GIS, Springer International Publishing, 2015.

[38] H. Ishii, "Tangible Bits: Beyond Pixels," in 2nd Int. Conf. on Tangible
and Embedded Interaction, Bonn, Germany, 2008.

[39] M. Kaltenbrunner and R. Bencina, "reacTIVision: a computer-vision
framework for table-based tangible interaction," in 1st Int. Conf. on
Tangible and embedded interaction, Louisiana, USA, 2007.

