
Exposing Knowledge: Providing a Real-Time
View of the Domain Under Study for Students

Omar Zammit1, Clifford De Raffaele1, Serengul Smith2, and Miltos Petridis2

1 Faculty of Computer Science, Middlesex University Malta
Block A, Alamein Road Pembroke PBK 1776 Malta

o.zammit@mdx.ac.uk

cderaffaele@ieee.org
2 Faculty of Computer Science, Middlesex University

The Burroughs, Hendon, London, NW4 4BT
s.smith@mdx.ac.uk

m.petridis@mdx.ac.uk

Abstract. With the amount of information that exists online, it is im-
possible for a student to find relevant information or stay focused on the
domain under study. Research showed that search engines have deficien-
cies that might prevent students from finding relevant information. In
this research, we are proposing a solution that takes the personal search
history of a student into consideration and provides a holistic view of
the domain under study. A bag-of-words for each searched keyword is
created and used to query third-party APIs to find relevant papers and
construct a Word Cloud. To archive this we built a user interface to
present the aggregated results to the student. In order to evaluate our
approach, we used some of the commonly used datasets and compared
our results to existing research.

Keywords: Search Engine Keywords · Similarity Analysis · Text En-
richment

1 Introduction

Confidence in search engines has increased, some Internet users nowadays tend to
give high veracity to a website because of its inclusion or high ranking in a search
engine result [5]. Some authors also stated that with the amount of information
that exists on-line it is more difficult for users to find accurate information [25]
and therefore it is impossible for an Internet user to find information without the
use of a search engine [11]. Unfortunately, such search engines have deficiencies.
Some authors state that search engines tend to be biased and favor certain web
sites over others [22]. And that such discrepancies between search engines makes
it difficult for Internet users to decide which search engines to trust. It is already
challenging for Internet users to judge relevance of on-line content [26] and ignore
fake news [47] let alone having such inconsistency and doubts about validity.
By design, search engines are targeting a generic audience and search results
might not be suitable for a specific group of people [49] like students. We are

2 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

focusing on providing a better search experience to students while they are doing
research, and try to overcome some of the deficiencies imposed by search engines.
To achieve this we are proposing a solution that aims to help students focus more
on the domain they are studying by exposing them to various resources related
to the domain. The solution takes in consideration previously searched queries
related to the current domain being studied using a combination of similarity
analysis techniques. A bag-of-words is created that is used to query third party
APIs to find relevant papers and construct a Word Cloud. The proposed solution
includes a graphical user interface that will allow students to have a holistic view
of the domain being studied.

2 Current Solutions

There are various solutions that are trying to assist students in their study. Some
suggest to move away from a search engine and focus on an educational search
engine that is focusing on a particular domain [49]. Such approach is problematic
since students tend to rely on search engines before libraries to search a new
term or when they are unfamiliar with a new topic [10], and therefore it might
be challenging to convince them to move away from search engines. Various
authors focus their studies on users URL visited or browsing clicks to understand
browsing habits [14, 43, 48, 49]. We are taking a similar approach but we are
focusing mainly on the keywords visited by the student, since these are the entry
point of a web search session.
As described by Kim et al.[24], a web search session has three main components,
it starts with a student issuing a query, the search engine process the query and
surface a website. Then the student visits the website (see Fig.1)[24]. The figure
also depicts that actions between entities are bidirectional, this means that stu-
dents can start with a query and they will continue formulating different queries
until the required result is obtained [48]. In addition, during a study on an edu-
cation search engine, the authors also noted that some of the queries submitted
by students are most likely to be repeated [48]. Queries are often appended to

Fig. 1. A web search session as explained in [24]

URLs together with session parameters and form data [50] and some studies
already showed that such data can be used to learn about users browsing behav-
iors [46]. Various studies has been done to understand how students search with

Providing a Real-Time View of the Domain Under Study 3

the purpose of learning, for example in their research Usta et al.[48] focused on
K-12 3 students search behavior in a learning environment and compared such
behavior with general web search engines trends [48]. Vidinli and Ozcan[49] pro-
posed a general modular framework for query suggestion algorithm development
to overcome the issue that search engines are targeting a very diverse popula-
tion [49]. Their research focused mainly on K-12 students, since such students
have difficulty in formulating queries. In their research they reduced the query
suggestion problem by comparing queries using various comparison algorithms.
The only issue with such framework is that they are targeting K-12 student only
and not focusing on undergraduate or post-graduate students.
Smith et al.[43] did an exploratory study on query auto completion usage dur-
ing a search session with assigned tasks. In order to monitor user activity they
used a modified version of CrowdLogger4, a Google Chrome extension to collect
searched keywords. Searched keywords where re-submitted using Google QAC
API and all Search Engine Results Pages (SERP) were scraped and cleaned
from images and other elements before displaying them to the user. Such ap-
proach can be used to collect data and evaluate a system that its main aim is to
learn more about browsing habits [43]. We moved away from creating a Internet
browser extension, since this requires a student to install such extension. We
opted to take a seamless approach, that reads directly from the browser local
history database and thus is invisible to the student.
Various work was cited by Smith et al.[43] on feature extraction when learning on
browsing behavior. In Bast and Weber[6] the authors mined query logs and used
query frequency to predict query completion and rank suggestions [6]. Some
authors also took context into Python method to convert text to tokens like
seasonal adjustment [42], demographics and individual search history [41].

3 Proposed Solution

As stated by Rathod[39], keywords search terms play an important role to under-
stand user’s psychology [39] and we are using keywords searched by the student
to understand which domains relate to the student. Past students keywords are
taken in consideration since some studies show that previous information re-
quests originated by a user determine the context of the research [7, 16]. To
learn more about the student search preferences, and provide a holistic view of
the domain being researched by the student, we are extending the search session
as described in Kim et al. [24] by adding an additional framework (see Fig. 2).
Internet browsers, like Google Chrome and Mozilla Firefox, are storing his-
tory data on the local computer in SQLite5 databases [39] for reference. Such
databases contain data about URLs visited by the student and keywords searched
online. Unless special applications (for example, SQLite Database Browser6 or

3 From kindergarten to secondary school.
4 https://crowdlogger.cs.umass.edu/
5 https://www.sqlite.org/index.html
6 urlhttps://sqlitebrowser.org/

4 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

Fig. 2. Proposed framework showing additional components

SQLite Studio7) are used, such data is not easily accessible for students. We
are focusing on Google Chrome in this research since it is the leading Internet
browser [33].

3.1 Background Worker

Keywords Extraction from Local History We implemented a background
worker to extract information from the local history files and predict suitable
content. To achieve this the SQLite history file is copied into an accessible lo-
cation (since this cannot be read while being used by the browser) and SQL
statements are executed to extract keywords. Listing 1.1 shows the SQL query
used to extract keywords from the local history file. Note that last_vist_time
and limit are parameters specified by the background worker to retrieve data
in batches. The background worker will execute similar queries to extract infor-
mation on what the student searched in the past and identify in real time what
the student is currently searching during the search session.

Listing 1.1. SQLite query to get all keywords searched by the user from Google
Chrome history.

1 select ∗
2 from u r l s
3 inner join keyword search terms on
4 u r l s . id = keyword search terms . u r l i d
5 where u r l s . l a s t v i s i t t i m e > ?

7 https://sqlitestudio.pl/index.rvt

Providing a Real-Time View of the Domain Under Study 5

6 order by u r l s . l a s t v i s i t t i m e asc limit ? ;

Text Enrichment using Third Party API Keywords are not enough to
determine what students are searching for. Research shows that search queries
tend to be short ambiguous and under specified [37]. Having short text is less
effective due to its brevity and less sparsity of words and when dealing with such
data, enriching the semantics using external entities is essential [40]. Various
studies used third party like Wikipedia to enrich text or find similarity between
keywords [3, 15, 38, 40, 43].
In this research, text enrichment was implemented in the background worker, so
that more insight is known about the domain related to the keywords submitted
by the student. To achieve this, for each keyword searched by the student that
is stored in the local history, a Google search URL is created (see Listing 1.2)
and sent to Google.

Listing 1.2. Google request URL format

1 u r l = f ” https : //www. goog l e . com . mt/ search ?” \
2 f ”q={keyword}&oq={keyword}& c l i e n t=ubuntu”

The HTML response obtained contains search results in the form of HTML
anchor tags consisting of a URL to an external source and a short description
(anchor text). The background worker will parse the HTML tags and identify an-
chor tags. Since results may contain trending and e-commerce anchor tags other
than sponsored links [38], Python libraries based on Levenshtein distance8 were
used to determine if the anchor tag is relevant to the keyword being searched.
This was done by comparing the anchor tag description to the keyword itself.
As explained by Haldar and Mukhopadhyay[19], Levenshtein distance is the
number or deletions, insertions or substitutions required to transform a source
string s into a target string t [19]. The algorithm steps to compute distance lev:

Step 1: Let n be the length of s and m be the length of t.
Step 2: If min(n,m) = 0 then lev = max(n,m). No more steps.
Step 3: Create a matrix d containing 0..m rows and 0..n columns.
Step 4: Set the first row to 0..n and first column to 0..m.
Step 5: Process each s[i] value from 1 to n
Step 6: Process each t[i] value from 1 to m
Step 7: If s[i] = t[i] then cost = 0
Step 8: If s[i] 6= t[i] then cost = 1
Step 9: Set d[i, j] as follows:

d[i, j] = min

d[i− 1, j] + 1
d[i, j − 1] + 1
d[i− 1, j − 1] + cost

(1)

Step 10: Repeat from step 5 until d[n,m] value is found.

8 https://github.com/seatgeek/fuzzywuzzy

6 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

Step 11: lev = d[n,m]

The smaller the Levenshtein distance between the keyword and the anchor text
description, the more similar the two strings are [19]. Once anchor texts having
high degree of similarity are identified, a web request is done for each anchor tag
link and a bag-of-words based on their HTML content is created. Each HTML
response obtained from anchor tags link was cleaned as described by Hu et al.[21],
that is, removing HTML tags from the response, identify tokens, removing stop
words and eliminating punctuation [21]. The normalization steps done in this
research are similar to the steps suggested by Gowtham et al.[17]. But we took
a different approach, we used the Python Natural Language Toolkit, since this
includes functions to convert text to tokens, has a list of stop words, can perform
part of speech tagging and can convert a word to its lemma [28]. In addition, the
toolkit contains an implementation of the WordNet lexical database [23] used to
check the validity of the words. WordNet was selected since it models the lexical
knowledge of an English native speaker and defines Nouns and Verbs in a well-
defined hierarchy [35][32][23]. Some studies show that the majority of queries
submitted by users over the internet are a structured collection of noun-phrases,
in fact 70% of the query terms are made up mainly of nouns and proper nouns [4]
while other words like helping verbs and pronouns are considered as stopwords
[38]. As stated by Barr et al.[4] part-of-speech tagging on query keywords can
be significant when extracting features in machine learning [4]. We considered
this fact and in addition to text normalization, tokens that are not nouns and
verbs were removed from the bag-of-words.

3.2 Local Database

Once text enrichment is done, a local database is created that stores all keywords
searched by the user and their respective bag-of-words. We took this approach
so that text enrichment is only done once for a given keyword. As explained
in Section 3.4, similarity analysis is done using the bag-of-words stored in the
local database. Figure 3 shows the table that contains the keyword and the
bag-of-words.

Fig. 3. Local database table details

Providing a Real-Time View of the Domain Under Study 7

3.3 User Interface

When dealing with large amount of data, the focus point should not just be the
collection of data but the analysis and the ability to find meaningful results from
it [1]. In order to assist students a user interface was created that will allow the
students to view the results and the predictions computed by the background
worker (see Figure 4). The user interface is divided as follows:

Fig. 4. Evaluation User Interface to Display Predicted Data

1. Current Search: Provides a list of the last keywords searched by the student.
2. Similar Searches: Displays similar keywords searched by the student in the

past. Explained in Section 3.4.
3. System Logs: Contains system logs.
4. Domain Word Cloud : A word cloud representing the most commonly used

ngrams in the domain currently being searched by the student. Explained in
Section 3.5.

5. Academic References: Papers relevant to the domain of study collected from
Arxiv database. Explained in Section 3.5.

3.4 Similarity Analysis

Feature Extraction for Similarity Analysis In order to find similar keyword
searches similarity analysis was used. Hansen and Jaumard(1997) stated that in
order to group data, a dataset O = {O1, O2, ..., On} of N entities is needed [20].
The dataset is made up of the keywords searched by the user and their respective
bag-of-words. Hansen and Jaumard(1997) also stated that to classify samples O,

8 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

one should identify p characteristics of each sample and end up with a matrix X
of N × p. Since these characteristics define and will determine the dissimilarities
between entities. Perez-Tellez et al.(2014) identified various features that helped
them in characterization and categorization of Weblogs and other short texts.
Most of the features rely on the words (tokens) within the text [36]. For effective
transformation and for representation, word frequencies must be normalized in
terms of their frequency within a document and within the entire collection [35].
To achieve this Bafna et al.(2016) used TF-IDF with K-means and hierarchical
algorithms to classify news, emails and research papers on different topics [2]. TF-
IDF was used since this is a technique used to reduce the importance of common
terms in a collection so that it ensures that the matching of documents is more
influenced by discriminative words having low frequency [35]. Such technique
has already been used in various studies, for example some authors used TF-IDF
with K-means and hierarchical algorithms to classify news, emails and research
papers on different topics [2]. The idea behind this technique is to normalize the
words taking in consideration their frequency within a document and within the
entire collection [35]. As described by Erra et al.[13] TF-IDF measure for a term
t will be [13]:

– A higher value when t appears many times within few documents.
– A low value if t appears many times in many documents or fewer times in

one document.
– A low value if t appears in all documents.

Let D = {d1, d2, ..., dn} be a collection of documents or block of texts. TF-IDF
for word t can be computed as follown order to find similar keyword searched
by the student for a given keyword, similarity analysis was used. Hansen and
Jaumard[20] stated that in order to group data a dataset O = {O1, O2, ..., On} of
N entities is needed [20]. The dataset is made up of the keywords searched by the
student and their respective bag-of-words. Hansen and Jaumard[20] also stated
that to classify samples O one should identify p characteristics of each sample
and end up with a matrix X of N × p. Since these characteristics define and
will determine the dissimilarities between entities. Perez-Tellez et al.[36] identi-
fied various features that helped them in characterization and categorization of
Weblogs and other short texts. Most of the features rely on the words (tokens)
within the text [36]. For effective transformation and for representation, word
frequencies must be normalized in terms of their frequency within a document
and within the entire collection [35]. To achieve this Bafna et al.[2] used TF-IDF
with K-means and hierarchical algorithms to classify news, emails and research
papers on different topics [2]. TF-IDF was used since this is a technique s [13]:

tfidf(t, d,D) = tf(t, d)× idf(t,D) (2)

Where tf(t, d) is the number of instances of t in a document d. And idf(t,D)
which is the inverse document frequency can be described as [13]:

idf(t,D) = log10

(
|D|

|{d|t ∈ d}|

)
(3)

Providing a Real-Time View of the Domain Under Study 9

Where the total amount of documents D is divided by the number of documents
containing term t. Scikit-learn9 has a TF-IDF implementation that can convert
raw text into a TF-IDF matrix 10.

Fig. 5. Plotting TF-IDF values for some keywords.

In this research each bag-of-word for a given keyword was treated as a document
and converted into a TF-IDF matrix. Figure 5 shows a scatter plot of a TF-IDF
matrix for three keyword searches. Since TF-IDF has high dimensional data t-
distributed Stochastic Neighbor Embedding (t-SNE) was used as a dimension
reduction technique. t-SNE creates a location in a two or three dimensional map
for each datapoint and therefore reduces the dimensions using a probabilistic
technique [29]. van der Maaten and Hinton[29] outlined that t-SNE showed high
performance and a much better job revealing the classes when compared to other
techniques [29]. An implementation of t-SNE is also available in Scikit-learn11.
In order to find similar keywords, we used three similarity measures. Cosine
similarity, Euclidean distance and Jaccard similarity. The first two measures
take as an input the TF-IDF vector to compute the similarity, while the latter
takes the actual bag-of-words. Every time a student searches a new keyword,
the background worker will detect the keyword and creates a bag-of-words and
a TF-IDF vector. Cosine similarity, Euclidean distance and Jaccard similarity are

9 https://scikit-learn.org/stable/modules/generated/sklearn.feature extraction.
text.TfidfVectorizer.html

10 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
11 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

10 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

computed comparing the searched keyword bag-of-words with existing keywords.
Similar keywords are selected as follows:

– Let C = {x : x keyword having high cosine similarity}
– Let J = {x : x keyword having high jaccard similarity}
– Let E = {x : x keyword having high eucledean distance}
– Display only entries from C ∩ J , C ∩ E and E ∩ J .

Cosine Similarity Chaithanya and Reddy[9] explained how Cosine similarity
can be used with TF-IDF to measure the similarity between two vectors and
outlined that such measure is suitable since it focuses on the orientation of the
document rather than the magnitude [9].

similarity = cos(θ) =
A ·B

‖A‖ × ‖B‖
=

∑n
i=1AiBi√∑n

i=1Ai
2
√∑n

i=1Bi
2

(4)

Cosine similarity ranges from -1 (exactly opposite), to 1 (exactly the same) [9].
An implementation of this measure is available in Scikit-learn12.

Euclidean Distance If Xi = (xi,1, ..., xi,D) and Xj = (xj,1, ..., xj,D) are D-
dimensional vectors representing two bag-of-words for two keywords that need
to be compared. The Euclidean distance η between both vectors is computed as
[31]

η =

√√√√ D∑
d=1

(xi,d − xj,d)2 (5)

An implementation of the Euclidean distance is available in Scikit-learn13. Since
distance range can vary, normalization of the result was done using 1

1+η .

Jaccard Similarity Niwattanakul et al.[34] explained that Jaccard similarity
can determine the similarity between two data sets and is computed by dividing
the number of features that are common between two datasets by the number
of features that are not common [34]. Let A and B be two bag-of-words for two
keywords that need to be compared. Jaccard similarity can be computed as.

jaccard(A,B) =
|A ∩B|
|A ∪B|

(6)

Weighted Score Based Aggregation A weighted score based aggregation
was used as suggested by Vidinli and Ozcan [49] to aggregate the three algorithms

12 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine similarity.html
13 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.euclidean distances.html

Providing a Real-Time View of the Domain Under Study 11

used and compute the final similarity score. Each similarity score V was assigned
a coefficient k and the final score was computed as.

Score = kcos × Vcos + kjak × Vjak + keuc × Veuc (7)

A score is assigned for each keyword searched by the student from the local
database. The top 10 keywords having the highest scores are displayed in the
user interface and presented to the student as top similar keywords.

3.5 Wordcloud and Academic References

In order to provide an overview of the domain being researched and to expose
student to new terminologies within the domain, we added a word cloud to the
user interface. The word cloud is constructed using bigrams extracted from the
bag-of-words associated with the similar keywords identified by the background
worker. In addition, a third party provider for academical journals was used to
display research papers and expose student to research material related to the
domain under research. The approach involves, identifying the top most used
bigrams from the bag-of words, find similar titles in Wikipedia (to endure that
the bigrams are valid), search bigrams in the Arxiv database [30] and display
top results returned in the user interface. The following list shows how some
bigrams from the bag-of-words were transformed into more meaningful titles
using Wikipedia:

– document preparation → document preparation system
– latex project → latex
– preparation system → document preparation system
– language processing → natural language processing

4 Evaluation

In order to evaluate the proposed solution and assess the semantic relation-
ship validity we used Mturk-77114[18], Rel-12215[45] and WordSimilarity-
35316[16], since these are some of the most commonly used datasets for sim-
ilarity analysis [27]. Datasets are composed of two terms and their similarity
score based on human judgment. A grid search approach similar to the one de-
scribed by Buitinck et al. [8] was conducted on each dataset to determine the
best similarity coefficient and to validate the results obtained. A nested loop was
created that allowed to iterate through 11 coefficient values (from 0 to 2 with
0.2 increment) for each similarity analysis totaling a 113 combinations. For each
combination a similarity score was computed by our system for each word pair in
the dataset. Pearson product-moment correlation coefficient [12] and Spearman

14 http://www2.mta.ac.il/ gideon/mturk771.html
15 http://www.cs.ucf.edu/ seansz/rel-122/
16 http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/

12 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

rank-order correlation coefficient [44] was used to compare the similarity score
obtained by our system to the human judgment score in the dataset. Both cor-
relations are implemented in the scipy.stats library17. For every grid search
iteration, the highest Pearson and Spearman rank was noted together with the
iteration coefficients. Table 1 shows the highest Pearson and Spearman rank ob-
tained for each dataset and the similarity coefficient that was used by the grid
search. We used bold to indicate the highest value obtained. Results in table 1

WordSimilarity-353 grid search results

Cosine Jakkard Euclidean
Coefficient Coefficient Coefficient Pearson Spearman

1.4 0 0 0.456809 0.566421
1.8 0 1.2 0.437034 0.568721

Mturk-771 grid search results

Cosine Jakkard Euclidean
Coefficient Coefficient Coefficient Pearson Spearman

0.8 0 0 0.441912 0.528315

Rel-122 grid search results

Cosine Jakkard Euclidean
Coefficient Coefficient Coefficient Pearson Spearman

2 0 0 0.438949 0.469933
0.6 0 0.2 0.338858 0.479553

Table 1. Grid search results for all datasets

show that Jakkard Similarity did not contribute in improving the accuracy of
the similarity analysis, while Euclidean distance contributed in improving the
Spearman Correlation for some datasets.
In order to evaluate our approach, we compared our similarity results to existing
research mainly focusing on the work done by Li et al.[27]. In their research the
authors used Wikipedia features to find the similarity between terms and they
compared their results with existing benchmarks.

Pearson Spearman
Dataset Benchmark Our System Benchmark Our System

Mturk-771 0.56 0.44 0.62 0.53
Rel-122 0.64 0.44 0.65 0.47
WordSimilarity-353 0.56 0.46 0.76 0.57

Table 2. Comparison of Pearson and Spearman as Li et al.[27]

As shown in Table 2, our results are lower than the benchmarks identified in Li
et al.[27] but this does not mean that the proposed solution is not robust enough
to assist students. One should note that the evaluation approach is measuring
the ability of our system to compute the similarity between two keywords or
for a given keyword find only one similar keyword from a list of previously

17 https://docs.scipy.org/doc/

Providing a Real-Time View of the Domain Under Study 13

searched keywords. Therefore the evaluation is not taking in consideration that
our similarity analysis is configured to return top 10 similar keywords.
For example, assume that for a given keyword, according to human judgment
’Keyword A’ and ’Keyword B’ are the top two most similar keywords from a
list of keywords. Since our proposed solution is configured to return the top
10 similar keywords, it will go through the list, perform similarity analysis and
assign a ranking. Keywords are sorted in descending order by ranking and the top
10 items are identified and presented to the student. The evaluation is assessing
the capability of our system to predict ’Keyword A’ and ’Keyword B’ as the top
two items and not that ’Keyword A’ and ’Keyword B’ are actually in the list of
top 10 keywords and therefore they are still visible to the student. Having both
keywords in the list means that the student still holds visibility of ’Keyword A’
and ’Keyword B’.

5 Conclusion

It is difficult for students to keep focus while research and find relevant informa-
tion, various factors including query formulation and search engines deficiencies.
We took advantage of the browsing history database to extract keywords and
try to understand what students are searching for. We proposed a solution that
captures the keywords searched by the student in real-time and provides a holis-
tic view of the domain under study. For a given keyword, using various similarity
analysis, we are identifying similar previously searched keywords, creating a do-
main word cloud and retrieve academical papers related to the domain under
study. Results and predictions are aggregated and presented to the student in a
user interface that can be used alongside an Internet browser.
The evaluation performed showed that Cosine similarity and Euclidean distance
contributed in increasing the accuracy of the proposed solution while Jakkard
similarity did not contribute. Although the proposed solution scored less accu-
racy than existing benchmarks, the fact that the solution is identifying the top
10 similar keywords and displaying words related to the domain in a word cloud
makes the solution robust and suitable for students during their study.

Bibliography

[1] Aljrees, T., Shi, D., Windridge, D., Wong, W.: CRIMINAL PATTERN
IDENTIFICATION BASED ON MODIFIED K-MEANS CLUSTERING.
In: 2016 International Conference on Machine Learning and Cybernetics
(ICMLC), vol. 2, pp. 10–13, South Korea (2016), ISBN 2160-1348 VO - 2,
https://doi.org/10.1109/ICMLC.2016.7872990

[2] Bafna, P., Pramod, D., Vaidya, A.: Document clustering: TF-IDF approach.
pp. 61–66 (2016), https://doi.org/10.1109/ICEEOT.2016.7754750

[3] Banerjee, S., Ramanathan, K., Gupta, A.: Clustering short texts us-
ing wikipedia. In: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information re-
trieval - SIGIR ’07 (2007), ISBN 9781595935977, ISSN 1595935975,
https://doi.org/10.1145/1277741.1277909

[4] Barr, C., Jones, R., Regelson, M.: The Linguistic Structure of English Web-
search Queries. In: Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pp. 1021–1030, EMNLP ’08, Associa-
tion for Computational Linguistics, Stroudsburg, PA, USA (2008), URL
http://dl.acm.org/citation.cfm?id=1613715.1613848

[5] Bartlett, J., Miller, C.: Truth, Lies and the Internet a Report Into Young
People’S Digital Fluency. Demos (September), 1–59 (2011), ISSN 1603-9629

[6] Bast, H., Weber, I.: Type less, find more: fast autocompletion search with
a succinct index. In: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval,
pp. 364–371, ACM (2006)

[7] Bharat, K.: SearchPad: Explicit capture of search context to support web
search. Computer Networks 33(1-6), 493–501 (2000)

[8] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O.,
Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., Vander-
Plas, J., Joly, A., Holt, B., Varoquaux, G.: API design for machine learn-
ing software: experiences from the scikit-learn project. In: ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pp. 108–122
(2013)

[9] Chaithanya, K., Reddy, P.V.: A Novel approach for Document Clustering
using Concept Extraction. Tech. rep. (2016), URL www.ijirae.com

[10] Cheng, Y.h., Tsai, C.c.: Online Research Behaviors of Engineering Graduate
Students in Taiwan 20, 169–179 (2017)

[11] Chiru, C.: SEARCH ENGINES: ETHICAL IMPLICATIONS. Tech. Rep. 1
(2016)

[12] Dillon, M.: Introduction to modern information retrieval: G. Salton and M.
McGill. McGraw-Hill, New York (1983). xv+ 448 pp., $32.95 ISBN 0-07-
054484-0 (1983)

[13] Erra, U., Senatore, S., Minnella, F., Caggianese, G.: Approximate TF-
IDF based on topic extraction from massive message stream using

Providing a Real-Time View of the Domain Under Study 15

the GPU. Information Sciences 292, 143–161 (2015), ISSN 00200255,
https://doi.org/10.1016/j.ins.2014.08.062

[14] Feild, H.A., Allan, J., Glatt, J.: CrowdLogging: distributed, private, and
anonymous search logging. In: Proceedings of the 34th international ACM
SIGIR conference on Research and development in Information Retrieval,
pp. 375–384, ACM (2011)

[15] Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short
text fragments (by wikipedia entities). In: Proceedings of the 19th
ACM international conference on Information and knowledge man-
agement - CIKM ’10 (2010), ISBN 9781450300995, ISSN 0740-7459,
https://doi.org/10.1145/1871437.1871689

[16] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z.,
Wolfman, G., Ruppin, E.: Placing search in context: The con-
cept revisited. ACM Transactions on information systems 20(1),
116–131 (2002), https://doi.org/10.1145/371920.372094, URL
http://doi.acm.org/10.1145/371920.372094

[17] Gowtham, S., Goswami, M., Balachandran, K., Purkayastha, B.S.: An ap-
proach for document pre-processing and K Means algorithm implementa-
tion. In: Proceedings - 2014 4th International Conference on Advances in
Computing and Communications, ICACC 2014, pp. 162–166, IEEE (2014),
ISBN 9781479943647, https://doi.org/10.1109/ICACC.2014.46

[18] Halawi, G., Dror, G., Gabrilovich, E., Koren, Y.: Large-scale learning
of word relatedness with constraints. In: Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pp. 1406–1414, ACM (2012)

[19] Haldar, R., Mukhopadhyay, D.: Levenshtein distance technique in
dictionary lookup methods: An improved approach. arXiv preprint
arXiv:1101.1232 (2011)

[20] Hansen, P., Jaumard, B.: Cluster Analysis and Mathemati-
cal Programming. Math. Program. 79(1-3), 191–215 (oct 1997),
ISSN 0025-5610, https://doi.org/10.1007/BF02614317, URL
http://dx.doi.org/10.1007/BF02614317

[21] Hu, X., Tang, J., Gao, H., Liu, H.: Unsupervised sentiment analysis with
emotional signals. In: Proceedings of the 22nd international conference on
World Wide Web - WWW ’13 (2013), ISBN 9781450320351, ISSN 15334880,
https://doi.org/10.1145/2488388.2488442

[22] Introna, L.D., Nissenbaum, H.: Shaping the web: Why the politics of search
engines matters. Information Society 16(3), 169–185 (2000), ISSN 10876537,
https://doi.org/10.1080/01972240050133634

[23] Kilgarriff, A., Fellbaum, C.: WordNet: An Electronic Lexical Database. Lan-
guage 76(3), 706 (2000), ISSN 00978507, https://doi.org/10.2307/417141,
URL https://www.jstor.org/stable/417141?origin=crossref

[24] Kim, J.Y., Collins-Thompson, K., Bennett, P.N., Dumais, S.T.: Character-
izing web content, user interests, and search behavior by reading level and
topic. In: Proceedings of the fifth ACM international conference on Web

16 Omar Zammit, Clifford De Raffaele , Serengul Smith, and Miltos Petridis

search and data mining - WSDM ’12 (2012), ISBN 9781450307475, ISSN
9781450307475, https://doi.org/10.1145/2124295.2124323

[25] Kraft, R.: A maschine learning approach to improve precision for naviga-
tional queries in a Web information retrieval system (2002)

[26] Leeder, C.: Student misidentification of online genres. Library and
Information Science Research 38(2), 125–132 (2016), ISSN 07408188,
https://doi.org/10.1016/j.lisr.2016.04.003

[27] Li, P., Xiao, B., Ma, W., Jiang, Y., Zhang, Z.: A graph-based semantic
relatedness assessment method combining wikipedia features. Engineering
Applications of Artificial Intelligence 65, 268–281 (2017)

[28] Loper, E., Bird, S.: NLTK: The Natural Language Toolkit (2002),
ISSN 00313998, https://doi.org/10.3115/1118108.1118117, URL
http://arxiv.org/abs/cs/0205028

[29] van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of
machine learning research 9(Nov), 2579–2605 (2008)

[30] McKiernan, G.: arXiv. org: the Los Alamos National Laboratory e-print
server. International Journal on Grey Literature 1(3), 127–138 (2000)

[31] Mesquita, D.P.P., Gomes, J.P.P., Junior, A.H.S., Nobre, J.S.: Euclidean
distance estimation in incomplete datasets. Neurocomputing 248, 11–18
(2017)

[32] Miller, G.A.: WordNet: a lexical database for English.
Communications of the ACM 38(11), 39–41 (1995), ISSN
00010782, https://doi.org/10.1145/219717.219748, URL
http://portal.acm.org/citation.cfm?doid=219717.219748

[33] NetMarketShare: Mobile/Tablet Browser Market Share (2013), URL
https://www.netmarketshare.com/browser-market-share.aspx

[34] Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of
Jaccard coefficient for keywords similarity. In: Proceedings of the inter-
national multiconference of engineers and computer scientists, vol. 1, pp.
380–384 (2013)

[35] Patil, L.H., Atique, M.: A novel approach for feature selection method
TF-IDF in document clustering. In: Proceedings of the 2013 3rd IEEE
International Advance Computing Conference, IACC 2013, pp. 858–
862, IEEE (2013), ISBN 9781467345286, ISSN 1703-8847, 1703-8847,
https://doi.org/10.1109/IAdCC.2013.6514339

[36] Perez-Tellez, F., Cardiff, J., Rosso, P., Pinto, D.: Weblog and short
text feature extraction and impact on categorisation. Journal of In-
telligent and Fuzzy Systems 27(5), 2529–2544 (2014), ISSN 18758967,
https://doi.org/10.3233/IFS-141227

[37] Pound, J., Hudek, A.K., Ilyas, I.F., Weddell, G.: Interpret-
ing keyword queries over web knowledge bases. In: Proceed-
ings of the 21st ACM international conference on Information
and knowledge management - CIKM ’12, p. 305 (2012), ISBN
9781450311564, https://doi.org/10.1145/2396761.2396803, URL
http://dl.acm.org/citation.cfm?doid=2396761.2396803

Providing a Real-Time View of the Domain Under Study 17

[38] Rajeshwarkar, A., Nagori, M.: Optimizing Search Results using Wikipedia
based ESS and Enhanced TF-IDF Approach. International Journal of Com-
puter Applications 144(12) (2016)

[39] Rathod, D.M.: Web browser forensics: google chrome. International Journal
of Advanced Research in Computer Science 8(7) (2017)

[40] Shirakawa, M., Nakayama, K., Hara, T., Nishio, S.: Wikipedia-
Based Semantic Similarity Measurements for Noisy Short Texts
Using Extended Naive Bayes. IEEE Transactions on Emerg-
ing Topics in Computing 3(2), 205–219 (2015), ISSN 21686750,
https://doi.org/10.1109/TETC.2015.2418716

[41] Shokouhi, M.: Learning to personalize query auto-completion. In: Proceed-
ings of the 36th international ACM SIGIR conference on Research and
development in information retrieval, pp. 103–112, ACM (2013)

[42] Shokouhi, M., Radinsky, K.: Time-sensitive query auto-completion. In: Pro-
ceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval, pp. 601–610, ACM (2012)

[43] Smith, C.L., Gwizdka, J., Feild, H.: The use of query auto-completion over
the course of search sessions with multifaceted information needs. Informa-
tion Processing & Management 53(5), 1139–1155 (2017)

[44] Spearman, C.: The proof and measurement of association between two
things. American journal of Psychology 15(1), 72–101 (1904)

[45] Szumlanski, S., Gomez, F., Sims, V.K.: A new set of norms for semantic
relatedness measures. In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp.
890–895 (2013)

[46] Tikhonov, A., Prokhorenkova, L.O., Chelnokov, A., Bogatyy, I., Gu-
sev, G.: What can be Found on the Web and How. Proceed-
ings of the ACM Web Science Conference on ZZZ - WebSci
’15 pp. 1–10 (2015), https://doi.org/10.1145/2786451.2786468, URL
http://dl.acm.org/citation.cfm?doid=2786451.2786468

[47] Tredinnick, L., Laybats, C.: Evaluating digital sources: Trust, truth and
lies. Business Information Review 34(4), 172–175 (2017), ISSN 17416450,
https://doi.org/10.1177/0266382117743370

[48] Usta, A., Altingovde, I.S., Vidinli, I.B., Ozcan, R., Ulusoy, Ö.: How k-12 stu-
dents search for learning?: analysis of an educational search engine log. In:
Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, pp. 1151–1154, ACM (2014)

[49] Vidinli, I.B., Ozcan, R.: New query suggestion framework and
algorithms: A case study for an educational search engine. In-
formation Processing and Management 52(5), 733–752 (2016),
ISSN 03064573, https://doi.org/10.1016/j.ipm.2016.02.001, URL
http://dx.doi.org/10.1016/j.ipm.2016.02.001

[50] West, A.G., Aviv, A.J.: Measuring Privacy Disclosures in URL Query
Strings. Internet Computing, IEEE 18(6), 52–59 (2014), ISSN 1089-7801,
https://doi.org/10.1109/MIC.2014.104

